Fabrication industrielle
Internet des objets industriel | Matériaux industriels | Entretien et réparation d'équipement | Programmation industrielle |
home  MfgRobots >> Fabrication industrielle >  >> Industrial programming >> Verilog

Modélisation au niveau de la porte

La plupart des conceptions numériques sont réalisées à un niveau d'abstraction plus élevé comme RTL, bien qu'il devienne parfois intuitif de construire des circuits déterministes plus petits à un niveau inférieur en utilisant des éléments combinatoires comme et et ou . La modélisation effectuée à ce niveau est généralement appelée modélisation au niveau de la porte car cela implique des portes et a une relation un à un entre un schéma matériel et le code Verilog.

Verilog prend en charge quelques portes logiques de base appelées primitives car ils peuvent être instanciés comme des modules puisqu'ils sont déjà prédéfinis.

Portes Et/Ou/Xor

Ces primitives implémentent un ET et un OU porte qui prend de nombreuses entrées scalaires et fournit une seule sortie scalaire. Le premier terminal dans la liste des arguments de ces primitives est la sortie qui est mise à jour chaque fois que l'une des entrées change.

  
  
module gates (	input a, b, 
				output c, d, e);

	and (c, a, b); 	// c is the output, a and b are inputs
	or  (d, a, b);	// d is the output, a and b are inputs
	xor (e, a, b); 	// e is the output, a and b are inputs
endmodule

  
  
  
module tb;
	reg a, b;
	wire c, d, e;
	integer i;
	
	gates u0 ( .a(a), .b(b), .c(c), .d(d), .e(e));
	
	initial begin
		{a, b} = 0;
		
      $monitor ("[T=%0t a=%0b b=%0b c(and)=%0b d(or)=%0b e(xor)=%0b", $time, a, b, c, d, e);
		
		for (i = 0; i < 10; i = i+1) begin
			#1 	a <= $random;
				b <= $random;
		end
	end
endmodule

  
Journal de simulation
ncsim> run
[T=0 a=0 b=0 c(and)=0 d(or)=0 e(xor)=0
[T=1 a=0 b=1 c(and)=0 d(or)=1 e(xor)=1
[T=2 a=1 b=1 c(and)=1 d(or)=1 e(xor)=0
[T=4 a=1 b=0 c(and)=0 d(or)=1 e(xor)=1
[T=5 a=1 b=1 c(and)=1 d(or)=1 e(xor)=0
[T=6 a=0 b=1 c(and)=0 d(or)=1 e(xor)=1
[T=7 a=1 b=0 c(and)=0 d(or)=1 e(xor)=1
[T=10 a=1 b=1 c(and)=1 d(or)=1 e(xor)=0
ncsim: *W,RNQUIE: Simulation is complete.

Portes Nand/Nor/Xnor

L'inverse de toutes les portes ci-dessus sont également disponibles sous les formes de nand , nor et xnor . La même conception ci-dessus est réutilisée à l'exception que les primitives sont inversés avec leurs versions inverses.

  
  
module gates (	input a, b, 
				output c, d, e);

	// Use nand, nor, xnor instead of and, or and xor
	// in this example
	nand (c, a, b); 	// c is the output, a and b are inputs
	nor  (d, a, b);		// d is the output, a and b are inputs
	xnor (e, a, b); 	// e is the output, a and b are inputs
endmodule

  
  
  
module tb;
	reg a, b;
	wire c, d, e;
	integer i;
	
	gates u0 ( .a(a), .b(b), .c(c), .d(d), .e(e));
	
	initial begin
		{a, b} = 0;
		
      $monitor ("[T=%0t a=%0b b=%0b c(nand)=%0b d(nor)=%0b e(xnor)=%0b", $time, a, b, c, d, e);
		
		for (i = 0; i < 10; i = i+1) begin
			#1 	a <= $random;
				b <= $random;
		end
	end
endmodule

  
Journal de simulation
ncsim> run
[T=0 a=0 b=0 c(nand)=1 d(nor)=1 e(xnor)=1
[T=1 a=0 b=1 c(nand)=1 d(nor)=0 e(xnor)=0
[T=2 a=1 b=1 c(nand)=0 d(nor)=0 e(xnor)=1
[T=4 a=1 b=0 c(nand)=1 d(nor)=0 e(xnor)=0
[T=5 a=1 b=1 c(nand)=0 d(nor)=0 e(xnor)=1
[T=6 a=0 b=1 c(nand)=1 d(nor)=0 e(xnor)=0
[T=7 a=1 b=0 c(nand)=1 d(nor)=0 e(xnor)=0
[T=10 a=1 b=1 c(nand)=0 d(nor)=0 e(xnor)=1
ncsim: *W,RNQUIE: Simulation is complete.

Ces portes peuvent avoir plus de deux entrées.

  
  
module gates (	input a, b, c, d, 
				output x, y, z);

  and (x, a, b, c, d); 	// x is the output, a, b, c, d are inputs
  or  (y, a, b, c, d);	// y is the output, a, b, c, d are inputs
  nor (z, a, b, c, d); 	// z is the output, a, b, c, d are inputs
endmodule

  
  
  
module tb;
	reg a, b, c, d;
	wire x, y, z;
	integer i;
	
  gates u0 ( .a(a), .b(b), .c(c), .d(d), .x(x), .y(y), .z(z));
	
	initial begin
      {a, b, c, d} = 0;
		
      $monitor ("[T=%0t a=%0b b=%0b c=%0b d=%0b x=%0b y=%0b x=%0b", $time, a, b, c, d, x, y, z);
		
		for (i = 0; i < 10; i = i+1) begin
			#1 	a <= $random;
				b <= $random;
          		c <= $random;
          		d <= $random;

		end
	end
endmodule

  
Journal de simulation
ncsim> run
[T=0 a=0 b=0 c=0 d=0 x=0 y=0 x=1
[T=1 a=0 b=1 c=1 d=1 x=0 y=1 x=0
[T=2 a=1 b=1 c=1 d=0 x=0 y=1 x=0
[T=3 a=1 b=1 c=0 d=1 x=0 y=1 x=0
[T=4 a=1 b=0 c=1 d=0 x=0 y=1 x=0
[T=5 a=1 b=0 c=1 d=1 x=0 y=1 x=0
[T=6 a=0 b=1 c=0 d=0 x=0 y=1 x=0
[T=7 a=0 b=1 c=0 d=1 x=0 y=1 x=0
[T=8 a=1 b=1 c=1 d=0 x=0 y=1 x=0
[T=9 a=0 b=0 c=0 d=1 x=0 y=1 x=0
[T=10 a=0 b=1 c=1 d=1 x=0 y=1 x=0
ncsim: *W,RNQUIE: Simulation is complete.

Portes Buf/Pas

Ces portes n'ont qu'une seule entrée scalaire et une ou plusieurs sorties. buf représente un tampon et transfère simplement la valeur de l'entrée à la sortie sans aucun changement de polarité. not désigne un inverseur qui inverse la polarité du signal à son entrée. Ainsi, un 0 à son entrée donnera un 1 et vice versa.

  
  
module gates (	input a, 
				output c, d);

  buf (c, a); 		// c is the output, a is input
  not (d, a);		// d is the output, a is input
endmodule

  
  
  
module tb;
	reg a;
	wire c, d;
	integer i;
	
	gates u0 ( .a(a), .c(c), .d(d));
	
	initial begin
		a = 0;
		
      $monitor ("[T=%0t a=%0b c(buf)=%0b d(not)=%0b", $time, a, c, d);
		
		for (i = 0; i < 10; i = i+1) begin
			#1 	a <= $random;
		end
	end
endmodule

  
Journal de simulation
xcelium> run
[T=0 a=0 c(buf)=0 d(not)=1
[T=2 a=1 c(buf)=1 d(not)=0
[T=8 a=0 c(buf)=0 d(not)=1
[T=9 a=1 c(buf)=1 d(not)=0
xmsim: *W,RNQUIE: Simulation is complete.

Le dernier terminal de la liste des ports se connecte à l'entrée de la porte et tous les autres terminaux se connectent au port de sortie de la porte. Voici un exemple de tampon de sortie multiple, bien qu'il soit rarement utilisé.

  
  
module gates (	input  a, 
				output c, d);

  not (c, d, a); 		// c,d is the output, a is input
  
endmodule

  
Journal de simulation
xcelium> run
[T=0 a=0 c=1 d=1
[T=2 a=1 c=0 d=0
[T=8 a=0 c=1 d=1
[T=9 a=1 c=0 d=0
xmsim: *W,RNQUIE: Simulation is complete.

Bufif/Notif

Les tampons et onduleurs avec un signal de contrôle supplémentaire pour activer la sortie sont disponibles via bufif et notif primitifs. Ces portes ont une sortie valide uniquement si le signal de commande est activé, sinon la sortie sera en haute impédance. Il en existe deux versions, une avec une polarité normale de contrôle indiquée par un 1 comme bufif1 et notif1 et deuxième avec polarité de contrôle inversée indiquée par un 0 comme bufif0 et notif0 .


Verilog

  1. Fonction de porte de base
  2. Transistors, jonction effet de champ (JFET)
  3. Portée des variables C#
  4. Concevoir des couches d'abstraction
  5. Exemples de niveau de porte Verilog
  6. Délai de porte Verilog
  7. Modélisation du niveau de commutation
  8. Qu'est-ce qu'une mire de niveau ?
  9. Comment niveler un tour