Fabrication industrielle
Internet des objets industriel | Matériaux industriels | Entretien et réparation d'équipement | Programmation industrielle |
home  MfgRobots >> Fabrication industrielle >  >> Manufacturing Technology >> Processus de fabrication

VMC CNC 3 axes bricolage

Composants et fournitures

Arduino Nano R3
× 1
Raspberry Pi 3 Modèle B
× 1
Carte pilote de moteur pas à pas SparkFun A4988
× 1
Adafruit Arduino Nano 4-stepper 1-DC RepRap shield
× 1
Entretoises en aluminium OpenBuilds
× 1
alimentation 12v/5a
× 1
OpenBuilds L Bracket
× 1
OpenBuilds M5 Tee Nuts (Pack de 10)
× 1
Vis à profil bas OpenBuilds M5 (paquet de 10)
× 1
Vis à tête cylindrique OpenBuilds M3
× 1
OpenBuilds Set Screw
× 1
Rondelle à fente OpenBuilds - 15x5x2mm
× 1
Bloc d'écrou anti-jeu OpenBuilds pour vis-mère Acme métrique de 8 mm
× 1
Plaque de tige filetée OpenBuilds - Moteur pas à pas NEMA 17
× 1
Vis-mère métrique Acme 8 mm OpenBuilds
× 1
Bloc d'écrou anti-jeu OpenBuilds pour vis-mère Acme métrique de 8 mm
× 1
Roulement à billes OpenBuilds – 625 2RS 5x16x5
× 1
canne lisse
× 1
ventilateur bldc
× 1
Moteur à courant continu (générique)
× 1
Servos (Tower Pro MG996R)
× 1
Texas Instruments Dual H-Bridge Motor Drivers L293D
× 1

Outils et machines nécessaires

Tournevis
Perceuse
Dremel / Outil de coupe rotatif
Pistolet à colle
Fer à souder (générique)
meuleuse d'angle

Applications et services en ligne

Linux
ArtCAM
GRBL 0.9
Autodesk Fusion 360
Arduino IDE
Google Android Things
VNC

À propos de ce projet

Notre modèle prototype est basé sur l'IoT, lui fournissant ainsi une architecture évolutive pour l'utiliser pratiquement n'importe où avec une connexion Internet. Il s'agit d'une CNC de 350 mm x 350 mm avec une zone de travail de 250 mm x 240 mm, fonctionnant sur un logiciel de contrôle de mouvement open source (GRBL). Même notre matériel est également principalement open source et entraîne donc la réduction des coûts majeure. Cette machine est entièrement fabriquée à partir d'articles achetés localement et peut usiner du bois, du plastique, du caoutchouc dur, de la résine dure, etc. Notre objectif principal est la fabrication de circuits imprimés à faible coût.

La perspective de l'envie de bois est également là.

Nous prévoyons également d'ajouter la prise en charge de l'usinage laser dans le cadre de notre futur projet.

Comme le système peut être actuellement contrôlé à partir d'un intranet local sans fil, nous voulons le faire évoluer pour créer une application Web modèle distribuée pour créer et connecter un écosystème de plusieurs de ces types d'appareils.

Les possibilités sont illimitées avec notre machine.

Notre modèle prototype a son cadre de base fabriqué à partir d'extrusions d'aluminium à fentes en T 2020 et de joints en L. La machine fournit une puissance d'environ 80 à 85 watts avec sa broche à commande CC de 2000 tr/min. Il a un schéma de mouvement de vis mère et de tige filetée avec des tiges lisses de guidage ayant des roulements à billes à encliquetage à rainure radiale pour des opérations en douceur le long des 3 axes.

Le pas de pas minimum est de 0,8 mm/tour avec 2000 pas/tour, nous avons une résolution de 1600 pour tous les axes. La taille de notre machine brute est d'environ 430x430x330mm et la zone de travail est d'environ 270x170x65mm avec une précision de position de 0,04mm. Notre portique à axe Z est imprimé en 3D à partir de zéro avec deux tiges de guidage.

L'axe Z se déplace de 4,8 cm avec l'embout de broche monté. Nous utilisons un outil de coupe V-bit à 45 ° à des fins de gravure de circuits imprimés, il prend également en charge les fraises en bout de 0,2 mm à 1,8 mm. Nous utilisons des moteurs pas à pas NEMA 23 avec un courant max de 3A pour chaque entraînement principal d'axe. Les moteurs sont entraînés par des pilotes 2.5A A4988 avec une résolution de micro-pas maximale de 1/16e nous offrant la précision d'usinage ultime à un coût très économique.

Pour la partie IoT, nous avons rendu possible le contrôle du routeur CNC à partir d'un écran sans tête comme un écran mobile/tablette (agissant ici comme notre IHM) depuis n'importe où avec une connexion Internet. Nous utilisons un Raspberry Pi et un routeur (de sécurité) connecté à Internet et exécutant un serveur Web pour fournir une interface permettant de contrôler notre CNC sans fil. Nous prévoyons également d'obtenir des informations précieuses sur les pièces de machines telles que le couple moteur en temps réel, le courant consommé, les vibrations, le bruit, etc. et d'obtenir des informations en temps réel sur une plate-forme Web pour une meilleure collaboration. Ce qui est peut-être appelé dans le secteur manufacturier IdO industriel (INDUSTRIE 4.0) .

Code

  • Exemple de Gcode
  • Code pas à pas
  • Bibliothèques
  • Bibliothèque
Exemple de GcodeVHDL
(Version griffonnée de C:\Users\ABDERR~1\AppData\Local\Temp\ink_ext_XXXXXX.svgISF45X @ 3000.00)( unicorn.py --tab="plotter_setup" --pen-up-angle=50 -- pen-down-angle=30 --start-delay=160 --stop-delay=150 --xy-feedrate=3000 --z-feedrate=150 --z-height=0 --finished-height=0 - -register-pen=true --x-home=0 --y-home=0 --num-copies=1 --continuous=false --pause-on-layer-change=true C:\Users\ABDERR~ 1\AppData\Local\Temp\ink_ext_XXXXXX.svgISF45X )G21 (ftw métrique)G90 (mode absolu)G92 X0.00 Y0.00 Z0.00 (vous êtes ici)M300 S30 (stylo vers le bas)G4 P160 (attente 160ms)M300 S50 (stylo vers le haut) G4 P150 (attendre 150 ms) M18 (désengager les lecteurs) M01 (Le test d'enregistrement a-t-il été réussi ?) M17 (engager les lecteurs si OUI, et continuer) M01 (Couche de traçage « Calque 1 ») (Polyligne composée de 29 segments. )G1 X16.85 Y4.97 F3000.00M300 S30.00 (stylo baissé)G4 P160 (attente 160ms)G1 X14.07 Y5.98 F3000.00G1 X13.33 Y6.40 F3000.00G1 X10.74 Y6.40 F3000 .00G1 X8.14 Y6.49 F3000.00G1 X10.60 Y6.58 F3000.00G1 X13.07 Y6.64 F3000.00G1 X12.75 Y6.98 F3000.00G1 X11. 99 Y8.33 F3000.00G1 X12.30 Y9.13 F3000.00G1 X12.98 Y9.85 F3000.00G1 X14.73 Y10.48 F3000.00G1 X16.42 Y10.34 F3000.00G1 X16.89 Y10.16 F3000 .00G1 X17.20 Y10.44 F3000.00G1 X17.44 Y10.92 F3000.00G1 X15.95 Y12.12 F3000.00G1 X14.52 Y13.21 F3000.00G1 X14.17 Y14.50 F3000.00G1 X14.18 Y14.85 F3000.00G1 X13.90 Y14.95 F3000.00G1 X13.30 Y15.34 F3000.00G1 X13.02 Y16.08 F3000.00G1 X13.23 Y16.62 F3000.00G1 X14.03 Y16.94 F3000. 00G1 X14.80 Y16.89 F3000.00G1 X15.21 Y16.80 F3000.00G1 X15.35 Y17.02 F3000.00G1 X15.71 Y17.77 F3000.00G1 X16.05 Y18.61 F3000.00G1 X15.77 Y19 .35 F3000.00G1 X15.47 Y20.24 F3000.00G1 X15.20 Y20.73 F3000.00G1 X13.98 Y20.91 F3000.00G1 X12.47 Y21.26 F3000.00G1 X11.32 Y21.88 F3000.00G1 X10.23 Y23.00 F3000.00G1 X9.82 Y24.17 F3000.00G1 X9.94 Y24.90 F3000.00G1 X10.41 Y25.47 F3000.00G1 X10.77 Y25.78 F3000.00G1 X10.53 Y26. 37 F3000.00G1 X10.04 Y28.07 F3000.00G1 X10.02 Y29.68 F3000.00G1 X10.50 Y31.25 F3000.00G1 X11.46 Y32.80 F3000.00G1 X13.34 Y34.54 F3000.00G1 X15 .75 Y36.02 F3000.00G1 X16.94 Y3 6.57 F3000.00G1 X11.31 Y36.60 F3000.00G1 X5.53 Y36.58 F3000.00G1 X5.38 Y21.60 F3000.00G1 X5.41 Y8.55 F3000.00G1 X5.62 Y6.61 F3000.00G1 X5 .85 Y6.48 F3000.00G1 X5.50 Y6.40 F3000.00G1 X5.14 Y6.40 F3000.00G1 X5.14 Y21.60 F3000.00G1 X5.14 Y36.80 F3000.00G1 X11.39 Y36.80 F3000.00G1 X17.65 Y36.80 F3000.00G1 X18.65 Y37.07 F3000.00G1 X21.13 Y37.54 F3000.00G1 X23.70 Y37.69 F3000.00G1 X26.12 Y37.52 F3000.00G1 X28. 11 Y37.03 F3000.00G1 X28.70 Y36.80 F3000.00G1 X33.01 Y36.80 F3000.00G1 X37.32 Y36.80 F3000.00G1 X37.32 Y21.60 F3000.00G1 X37.32 Y6.40 F3000 .00G1 X32.21 Y6.40 F3000.00G1 X26.73 Y6.25 F3000.00G1 X22.57 Y5.07 F3000.00G1 X16.85 Y4.97 F3000.00G1 X16.85 Y4.97 F3000.00M300 S50.00 (stylo vers le haut)G4 P150 (attendre 150ms)(Polyligne composée de 29 segments.)G1 X20.57 Y5.03 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attendre 160ms)G1 X23.06 Y5.34 F3000. 00G1 X24.86 Y5.94 F3000.00G1 X25.99 Y6.82 F3000.00G1 X26.48 Y8.01 F3000.00G1 X26.11 Y9.51 F3000.00G1 X24.89 Y10.76 F3000.00G1 X23.73 Y11 .07 F3000.00G1 X22.18 Y10.75 F3 000.00G1 X20.76 Y10.29 F3000.00G1 X20.13 Y9.96 F3000.00G1 X19.83 Y9.40 F3000.00G1 X19.66 Y9.17 F3000.00G1 X19.74 Y9.72 F3000.00G1 X20.51 Y10.61 F3000.00G1 X21.41 Y11.91 F3000.00G1 X21.31 Y12.42 F3000.00G1 X20.85 Y12.91 F3000.00G1 X19.04 Y13.73 F3000.00G1 X18.83 Y13.81 F3000. 00G1 X19.56 Y13.72 F3000.00G1 X20.90 Y13.07 F3000.00G1 X21.48 Y12.71 F3000.00G1 X21.88 Y12.90 F3000.00G1 X23.87 Y14.56 F3000.00G1 X24.34 Y15 .23 F3000.00G1 X23.85 Y15.22 F3000.00G1 X19.04 Y15.20 F3000.00G1 X16.99 Y15.70 F3000.00G1 X15.62 Y16.42 F3000.00G1 X15.31 Y16.66 F3000.00G1 X14.86 Y15.95 F3000.00G1 X14.39 Y14.29 F3000.00G1 X14.89 Y12.97 F3000.00G1 X16.02 Y12.25 F3000.00G1 X17.19 Y11.48 F3000.00G1 X17.63 Y10. 79 F3000.00G1 X16.90 Y10.01 F3000.00G1 X16.07 Y9.45 F3000.00G1 X16.23 Y9.73 F3000.00G1 X16.50 Y10.15 F3000.00G1 X14.70 Y10.34 F3000.00G1 X13 .17 Y9.72 F3000.00G1 X12.44 Y9.03 F3000.00G1 X12.23 Y8.30 F3000.00G1 X12.53 Y7.53 F3000.00G1 X13.34 Y6.71 F3000.00G1 X15.72 Y5.44 F3000.00G1 X18.83 Y4.95 F3000.00G1 X20. 57 Y5.03 F3000.00G1 X20.57 Y5.03 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attente 150ms)(Polyline composée de 29 segments.)G1 X27.30 Y6.65 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attente 160ms)G1 X29.25 Y7.52 F3000.00G1 X30.16 Y8.34 F3000.00G1 X30.46 Y9.06 F3000.00G1 X30.29 Y9.88 F3000.00G1 X29.49 Y10.84 F3000.00G1 X28.16 Y11.51 F3000.00G1 X26.25 Y11.62 F3000.00G1 X25.07 Y10.96 F3000.00G1 X25.51 Y10.50 F3000.00G1 X26.26 Y9.62 F3000. 00G1 X26.58 Y8.19 F3000.00G1 X26.44 Y7.12 F3000.00G1 X25.77 Y6.34 F3000.00G1 X25.47 Y6.07 F3000.00G1 X25.68 Y6.08 F3000.00G1 X27.30 Y6 .65 F3000.00G1 X27.30 Y6.65 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyline composée de 29 segments.)G1 X37.06 Y21.42 F3000.00M300 S30.00 (stylo bas)G4 P160 (attendre 160ms)G1 X37.02 Y36.41 F3000.00G1 X36.96 Y36.62 F3000.00G1 X33.06 Y36.62 F3000.00G1 X29.16 Y36.58 F3000.00G1 X29.47 Y36. 10 F3000.00G1 X29.73 Y35.05 F3000.00G1 X29.34 Y34.00 F3000.00G1 X28.36 Y33.19 F3000.00G1 X26.78 Y32.58 F3000.00G1 X24.56 Y32.18 F3000.00G1 X24 .11 Y32.04 F3000.00G1 X24.44 Y31.73 F3000.00G1 X25.27 Y31.55 F3000.00G1 X28.11 Y31.00 F3000.00G1 X28.91 Y30.55 F3000.00G1 X29.29 Y29.72 F3000. 00G1 X29.84 Y28.76 F3000.00G1 X30.44 Y28.08 F3000.00G1 X30.69 Y27.27 F3000.00G1 X30.58 Y26.46 F3000.00G1 X30.11 Y25.77 F3000.00G1 X29.82 Y25 .45 F3000.00G1 X29.90 Y25.05 F3000.00G1 X29.83 Y24.22 F3000.00G1 X28.51 Y23.12 F3000.00G1 X26.38 Y22.66 F3000.00G1 X25.09 Y22.48 F3000.00G1 X24.68 Y22.25 F3000.00G1 X24.95 Y22.15 F3000.00G1 X26.03 Y21.82 F3000.00G1 X27.25 Y21.07 F3000.00G1 X27.59 Y20.36 F3000.00G1 X27.42 Y19. 68 F3000.00G1 X26.21 Y18.82 F3000.00G1 X24.70 Y18.51 F3000.00G1 X24.39 Y18.50 F3000.00G1 X24.42 Y18.22 F3000.00G1 X24.59 Y16.70 F3000.00G1 X24 .63 Y15.61 F3000.00G1 X24.39 Y15.01 F3000.00G1 X23.81 Y14.22 F3000.00G1 X23.52 Y13.85 F3000.00G1 X24.03 Y13.49 F3000.00G1 X24.69 Y12.99 F3000.00G1 X24.78 Y12.31 F3000.00G1 X24.54 Y11.48 F3000.00G1 X24.58 Y11.08 F3000.00G1 X25.21 Y11.31 F3000.00G1 X26.08 Y11.74 F3000.00G1 X27. 14 Y11.85 F3000.00G1 X28.29 Y11.66 F3000.00G1 X29.41 Y11.16 F3000.00G1 X30.24 Y10.39 F3000.00G1 X30.57 Y9.37 F3000.00G1 X30.36 Y8.29 F3000.00G1 X29.62 Y7.56 F3000. 00G1 X28.50 Y6.94 F3000.00G1 X27.96 Y6.65 F3000.00G1 X32.49 Y6.61 F3000.00G1 X37.02 Y6.63 F3000.00G1 X37.06 Y21.42 F3000.00G1 X37.06 Y21 .42 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attente 150ms)(Polyligne composée de 29 segments.)G1 X21.74 Y10.75 F3000.00M300 S30.00 (stylo abaissé)G4 P160 (attente 160ms)G1 X23.52 Y11.21 F3000.00G1 X24.24 Y11.32 F3000.00G1 X24.56 Y12.13 F3000.00G1 X24.48 Y12.99 F3000.00G1 X23.87 Y13.45 F3000.00G1 X23.38 Y13. 75 F3000.00G1 X22.69 Y13.25 F3000.00G1 X21.76 Y12.68 F3000.00G1 X21.57 Y12.14 F3000.00G1 X21.44 Y11.41 F3000.00G1 X20.80 Y10.64 F3000.00G1 X20 .54 Y10.34 F3000.00G1 X21.74 Y10.75 F3000.00G1 X21.74 Y10.75 F3000.00M300 S50.00 (stylo vers le haut)G4 P150 (attendre 150ms)(Polyline composée de 29 segments.)G1 X14. 28 Y15.20 F3000.00M300 S30.00 (stylo baissé)G4 P160 (attente 160ms)G1 X14.69 Y15.95 F3000.00G1 X14.87 Y16.70 F3000.00G1 X13.98 Y16.78 F3000.00G1 X13.23 Y16.33 F3000.00G1 X13.26 Y15.80 F3000.00G1 X13.54 Y15.32 F3000.00G1 X13.94 Y15.06 F3000.00G1 X14.28 Y15.20 F3000.00G1 X14.28 Y15. 20 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attente 150ms)(Polyligne composée de 29 segments.)G1 X23.89 Y15.40 F3000.00M300 S30.00 (stylo abaissé)G4 P160 (attente 160ms)G1 X24 .27 Y15.61 F3000.00G1 X24.44 Y16.05 F3000.00G1 X24.22 Y18.19 F3000.00G1 X24.03 Y18.95 F3000.00G1 X23.02 Y18.27 F3000.00G1 X20.70 Y17.13 F3000.00G1 X19.62 Y17.10 F3000.00G1 X18.46 Y17.41 F3000.00G1 X16.91 Y18.21 F3000.00G1 X16.22 Y18.67 F3000.00G1 X16.19 Y18.46 F3000.00G1 X15. 83 Y17.68 F3000.00G1 X15.47 Y16.93 F3000.00G1 X16.23 Y16.20 F3000.00G1 X18.05 Y15.51 F3000.00G1 X21.11 Y15.23 F3000.00G1 X23.89 Y15.40 F3000 .00M300 S50.00 (stylo relevé)G4 P150 (attente 150ms)(Polyligne composée de 29 segments.)G1 X21.29 Y17.47 F3000.00M300 S30.00 (stylo abaissé)G4 P160 (attente 160ms)G1 X23.50 Y18.80 F3000.00G1 X25.56 Y20.02 F3000.00G1 X26.14 Y20.17 F3000.00G1 X25.92 Y20.50 F3000.00G1 X24.80 Y21.28 F3000.00G1 X23.98 Y21.4 0 F3000.00G1 X22.98 Y21.10 F3000.00G1 X21.95 Y20.78 F3000.00G1 X21.63 Y20.62 F3000.00G1 X21.08 Y19.88 F3000.00G1 X20.05 Y19.10 F3000.00G1 X19 .03 Y19.22 F3000.00G1 X18.43 Y19.27 F3000.00G1 X17.95 Y19.18 F3000.00G1 X17.51 ​​Y19.96 F3000.00G1 X17.19 Y20.04 F3000.00G1 X16.57 Y20.11 F3000.00G1 X16.13 Y20.58 F3000.00G1 X15.93 Y20.86 F3000.00G1 X15.70 Y20.63 F3000.00G1 X15.78 Y19.60 F3000.00G1 X16.86 Y18.45 F3000.00G1 X19. 13 Y17.31 F3000.00G1 X20.21 Y17.23 F3000.00G1 X21.29 Y17.47 F3000.00G1 X21.29 Y17.47 F3000.00M300 S50.00 (stylo vers le haut)G4 P150 (attente 150ms)(Polyline consistant de 29 segments.)G1 X26.41 Y19.09 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attente 160ms)G1 X27.14 Y19.61 F3000.00G1 X27.43 Y20.17 F3000.00G1 X27.29 Y20.74 F3000.00G1 X26.71 Y21.31 F3000.00G1 X25.56 Y21.85 F3000.00G1 X24.35 Y22.08 F3000.00G1 X21.62 Y21.55 F3000.00G1 X21.69 Y21.22 F3000. 00G1 X21.91 Y20.88 F3000.00G1 X22.79 Y21.19 F3000.00G1 X24.30 Y21.49 F3000.00G1 X25.22 Y21.29 F3000.00G1 X25.94 Y20.72 F3000.00G1 X26.24 Y20 .20 F300 0.00G1 X25.65 Y19.87 F3000.00G1 X24.63 Y19.41 F3000.00G1 X24.25 Y18.98 F3000.00G1 X24.58 Y18.70 F3000.00G1 X25.38 Y18.71 F3000.00G1 X26.41 Y19.09 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attente 150ms)(Polyligne composée de 29 segments.)G1 X20.47 Y19.52 F3000.00M300 S30.00 (stylo abaissé)G4 P160 (attente 160ms) G1 X21.59 Y21.02 F3000.00G1 X21.45 Y21.31 F3000.00G1 X20.18 Y21.30 F3000.00G1 X18.93 Y20.60 F3000.00G1 X18.73 Y19.89 F3000.00G1 X19.06 Y19 .38 F3000.00G1 X19.71 Y19.20 F3000.00G1 X20.47 Y19.52 F3000.00G1 X20.47 Y19.52 F3000.00M300 S50.00 (stylo vers le haut)G4 P150 (attendre 150ms)(Polyline composée de 29 segments.)G1 X18.40 Y19.46 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attente 160ms)G1 X18.59 Y20.01 F3000.00G1 X18.80 Y20.68 F3000.00G1 X19.52 Y21. 20 F3000.00G1 X19.94 Y21.43 F3000.00G1 X19.77 Y21.57 F3000.00G1 X19.01 Y21.70 F3000.00G1 X18.36 Y21.46 F3000.00G1 X17.92 Y20.91 F3000.00G1 X17 .75 Y20.12 F3000.00G1 X18.11 Y19.31 F3000.00G1 X18.40 Y19.46 F3000.00M300 S50.00 (stylo vers le haut)G4 P150 (attendre 150ms)(Polyline consisti ng de 29 segments.)G1 X17.34 Y20.21 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attente 160ms)G1 X17.57 Y20.59 F3000.00G1 X18.44 Y21.73 F3000.00G1 X18. 77 Y21.86 F3000.00G1 X18.44 Y21.92 F3000.00G1 X17.48 Y21.91 F3000.00G1 X16.63 Y21.60 F3000.00G1 X16.25 Y20.93 F3000.00G1 X16.60 Y20.24 F3000 .00G1 X17.34 Y20.21 F3000.00G1 X17.34 Y20.21 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyligne composée de 29 segments.)G1 X16.11 Y21.33 F3000. 00M300 S30.00 (stylo vers le bas)G4 P160 (attente 160ms)G1 X17.34 Y22.06 F3000.00G1 X18.96 Y21.93 F3000.00G1 X19.98 Y21.60 F3000.00G1 X22.66 Y21.94 F3000. 00G1 X25.66 Y22.90 F3000.00G1 X27.77 Y24.32 F3000.00G1 X28.39 Y24.96 F3000.00G1 X27.58 Y24.90 F3000.00G1 X25.33 Y24.89 F3000.00G1 X26.59 Y25 .01 F3000.00G1 X28.53 Y25.22 F3000.00G1 X29.82 Y25.72 F3000.00G1 X30.47 Y26.50 F3000.00G1 X30.47 Y27.56 F3000.00G1 X29.78 Y28.65 F3000.00G1 X28.52 Y29.02 F3000.00G1 X27.29 Y28.75 F3000.00G1 X26.23 Y27.86 F3000.00G1 X25.65 Y27.41 F3000.00G1 X24.92 Y27.29 F3000.00G1 X24.65 Y27. 31 F30 00.00G1 X24.86 Y27.34 F3000.00G1 X25.18 Y27.38 F3000.00G1 X24.95 Y27.67 F3000.00G1 X24.54 Y28.37 F3000.00G1 X23.69 Y29.39 F3000.00G1 X23.07 Y30.03 F3000.00G1 X23.26 Y29.99 F3000.00G1 X24.15 Y29.94 F3000.00G1 X24.73 Y30.08 F3000.00G1 X24.88 Y30.40 F3000.00G1 X25.06 Y30.76 F3000. 00G1 X25.72 Y30.30 F3000.00G1 X26.44 Y29.84 F3000.00G1 X27.29 Y29.51 F3000.00G1 X28.61 Y29.15 F3000.00G1 X29.24 Y29.13 F3000.00G1 X29.14 Y29 .58 F3000.00G1 X28.98 Y30.21 F3000.00G1 X27.91 Y30.88 F3000.00G1 X25.68 Y31.34 F3000.00G1 X22.80 Y31.52 F3000.00G1 X19.80 Y31.37 F3000.00G1 X18.50 Y31.23 F3000.00G1 X18.49 Y31.31 F3000.00G1 X22.58 Y31.67 F3000.00G1 X24.11 Y31.73 F3000.00G1 X23.99 Y31.95 F3000.00G1 X23.36 Y32. 13 F3000.00G1 X20.76 Y32.50 F3000.00G1 X20.31 Y32.72 F3000.00G1 X21.00 Y32.57 F3000.00G1 X23.09 Y32.33 F3000.00G1 X25.50 Y32.44 F3000.00G1 X27 0,74 Y33.07 F3000.00G1 X29.12 Y34.03 F3000.00G1 X29.56 Y35.31 F3000.00G1 X28.81 Y36.44 F3000.00G1 X27.64 Y37.03 F3000.00G1 X25.83 Y37.40 F3000.00G1 X21.36 Y37.42 F30 00.00G1 X17.13 Y36.41 F3000.00G1 X13.56 Y34.53 F3000.00G1 X12.16 Y33.30 F3000.00G1 X11.08 Y31.92 F3000.00G1 X10.41 Y30.48 F3000.00G1 X10.25 Y28.79 F3000.00G1 X10.59 Y26.73 F3000.00G1 X10.96 Y25.92 F3000.00G1 X11.64 Y26.09 F3000.00G1 X14.41 Y26.25 F3000.00G1 X14.93 Y26.37 F3000. 00G1 X18.16 Y28.80 F3000.00G1 X19.16 Y29.37 F3000.00G1 X19.89 Y29.55 F3000.00G1 X21.95 Y29.85 F3000.00G1 X21.69 Y29.97 F3000.00G1 X21.49 Y30 .07 F3000.00G1 X22.66 Y29.69 F3000.00G1 X23.99 Y28.19 F3000.00G1 X22.32 Y28.67 F3000.00G1 X19.99 Y29.36 F3000.00G1 X19.26 Y29.28 F3000.00G1 X18.96 Y28.62 F3000.00G1 X18.86 Y28.24 F3000.00G1 X18.84 Y28.58 F3000.00G1 X18.72 Y28.93 F3000.00G1 X16.87 Y27.79 F3000.00G1 X15.17 Y26. 36 F3000.00G1 X15.64 Y25.80 F3000.00G1 X16.13 Y25.37 F3000.00G1 X15.74 Y25.56 F3000.00G1 X14.85 Y25.99 F3000.00G1 X13.66 Y26.16 F3000.00G1 X11 .44 Y25.87 F3000.00G1 X10.64 Y25.45 F3000.00G1 X10.13 Y24.87 F3000.00G1 X10.03 Y23.93 F3000.00G1 X10.90 Y22.46 F3000.00G1 X12.38 Y21.47 F3000.00G1 X15.35 Y20.88 F30 00.00G1 X16.11 Y21.33 F3000.00G1 X16.11 Y21.33 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyline composée de 29 segments.)G1 X20.69 Y22.24 F3000. 00M300 S30.00 (stylo baissé)G4 P160 (attente 160ms)G1 X20.79 Y22.76 F3000.00G1 X21.29 Y23.38 F3000.00G1 X22.37 Y23.78 F3000.00G1 X23.34 Y23.52 F3000. 00G1 X23.44 Y23.35 F3000.00G1 X23.10 Y23.48 F3000.00G1 X22.40 Y23.62 F3000.00G1 X21.47 Y23.27 F3000.00G1 X20.95 Y22.70 F3000.00G1 X20.99 Y22 .34 F3000.00G1 X20.95 Y22.21 F3000.00G1 X20.69 Y22.24 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyline composée de 29 segments.)G1 X14.38 Y22. 80 F3000.00M300 S30.00 (stylo baissé)G4 P160 (attente 160ms)G1 X13.38 Y23.55 F3000.00G1 X13.10 Y23.93 F3000.00G1 X13.67 Y24.07 F3000.00G1 X14.55 Y23. 88 F3000.00G1 X14.63 Y23.70 F3000.00G1 X14.39 Y23.52 F3000.00G1 X14.16 Y23.28 F3000.00G1 X14.51 Y22.88 F3000.00G1 X15.06 Y22.64 F3000.00G1 X15 .20 Y22.59 F3000.00G1 X14.92 Y22.47 F3000.00G1 X14.38 Y22.80 F3000.00G1 X14.38 Y22.80 F3000.00M300 S50.00 (stylo vers le haut)G4 P150 (wai t 150ms)(Polyligne composée de 29 segments.)G1 X12.06 Y23.03 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attendre 160ms)G1 X12.09 Y23.74 F3000.00G1 X12.87 Y24.26 F3000.00G1 X13.76 Y24.43 F3000.00G1 X14.60 Y24.23 F3000.00G1 X16.38 Y23.00 F3000.00G1 X15.54 Y23.51 F3000.00G1 X14.54 Y24.12 F3000.00G1 X13. 63 Y24.26 F3000.00G1 X12.46 Y23.91 F3000.00G1 X12.19 Y23.55 F3000.00G1 X12.21 Y23.14 F3000.00G1 X12.23 Y22.89 F3000.00G1 X12.06 Y23.03 F3000 .00G1 X12.06 Y23.03 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150 ms)(Polyline composée de 29 segments.)G1 X21.77 Y26.53 F3000.00M300 S30.00 (stylo abaissé)G4 P160 (attente 160ms)G1 X20.93 Y27.02 F3000.00G1 X20.39 Y27.69 F3000.00G1 X20.47 Y29.03 F3000.00G1 X20.47 Y28.66 F3000.00G1 X20.46 Y27.93 F3000. 00G1 X20.81 Y27.32 F3000.00G1 X20.97 Y27.19 F3000.00G1 X20.93 Y27.34 F3000.00G1 X21.01 Y27.75 F3000.00G1 X21.46 Y27.92 F3000.00G1 X21.99 Y27 0,74 F3000.00G1 X22.19 Y27.29 F3000.00G1 X21.82 Y26.88 F3000.00G1 X21.45 Y26.76 F3000.00G1 X21.85 Y26.63 F3000.00G1 X22.79 Y26.50 F3 000.00G1 X23.47 Y26.76 F3000.00G1 X23.76 Y27.26 F3000.00G1 X23.87 Y27.64 F3000.00G1 X23.99 Y27.52 F3000.00G1 X23.83 Y26.97 F3000.00G1 X23.03 Y26.40 F3000.00G1 X21.77 Y26.53 F3000.00G1 X21.77 Y26.53 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyligne composée de 29 segments.)G1 X27.79 Y22 .99 F3000.00M300 S30.00 (stylo baissé)G4 P160 (attente 160ms)G1 X29.58 Y24.08 F3000.00G1 X29.65 Y25.26 F3000.00G1 X29.13 Y25.25 F3000.00G1 X28.43 Y24 .71 F3000.00G1 X26.00 Y22.88 F3000.00G1 X26.04 Y22.79 F3000.00G1 X27.79 Y22.99 F3000.00G1 X27.79 Y22.99 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyligne composée de 29 segments.)G1 X25.85 Y27.75 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attendre 160ms)G1 X26.10 Y28.24 F3000.00G1 X25.81 Y28. 87 F3000.00G1 X24.91 Y29.47 F3000.00G1 X24.81 Y29.07 F3000.00G1 X25.01 Y28.67 F3000.00G1 X25.41 Y28.54 F3000.00G1 X25.55 Y28.20 F3000.00G1 X25 .36 Y27.82 F3000.00G1 X25.25 Y27.58 F3000.00G1 X25.43 Y27.46 F3000.00G1 X25.85 Y27.75 F3000.00M300 S50.00 (stylo vers le haut)G4 P150 (wa it 150ms)(Polyline composée de 29 segments.)G1 X23.53 Y28.63 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attendre 160ms)G1 X22.85 Y29.32 F3000.00G1 X22.16 Y29.64 F3000.00G1 X21.18 Y29.54 F3000.00G1 X20.71 Y29.43 F3000.00G1 X22.20 Y28.86 F3000.00G1 X23.73 Y28.29 F3000.00G1 X23.53 Y28.63 F3000.00G1 X23. 53 Y28.63 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attente 150ms)(Polyligne composée de 29 segments.)G1 X27.46 Y28.97 F3000.00M300 S30.00 (stylo abaissé)G4 P160 (attente 160ms )G1 X27.72 Y29.09 F3000.00G1 X26.09 Y29.77 F3000.00G1 X25.56 Y29.96 F3000.00G1 X25.77 Y29.98 F3000.00G1 X25.59 Y30.22 F3000.00G1 X25.15 Y30.48 F3000.00G1 X25.02 Y30.03 F3000.00G1 X25.02 Y29.65 F3000.00G1 X25.34 Y29.43 F3000.00G1 X26.04 Y28.78 F3000.00G1 X26.34 Y28.31 F3000. 00G1 X26.77 Y28.61 F3000.00G1 X27.46 Y28.97 F3000.00G1 X27.46 Y28.97 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyline composée de 29 segments.)G1 X24.71 Y29.72 F3000.00M300 S30.00 (stylo baissé)G4 P160 (attente 160ms)G1 X24.20 Y29.82 F3000.00G1 X23.65 Y29.70 F3000.0 0G1 X24.07 Y29.24 F3000.00G1 X24.53 Y28.81 F3000.00G1 X24.62 Y29.16 F3000.00G1 X24.71 Y29.72 F3000.00G1 X24.71 Y29.72 F3000.00M300 S50.00 ( stylet relevé)G4 P150 (attente 150ms)(Polyligne composée de 29 segments.)G1 X5.54 Y5.46 F3000.00M300 S30.00 (stylet abaissé)G4 P160 (attente 160ms)G1 X5.91 Y5.48 F3000.00G1 X5.65 Y5.39 F3000.00G1 X5.54 Y5.46 F3000.00G1 X5.54 Y5.46 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyline composée de 29 segments.)G1 X6 .11 Y5.52 F3000.00M300 S30.00 (stylo baissé)G4 P160 (attente 160ms)G1 X6.17 Y5.64 F3000.00G1 X6.18 Y5.47 F3000.00G1 X6.11 Y5.52 F3000.00G1 X6 .11 Y5.52 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attente 150ms)(Polyligne composée de 29 segments.)G1 X6.34 Y5.49 F3000.00M300 S30.00 (stylo abaissé)G4 P160 (attente 160ms)G1 X6.88 Y5.56 F3000.00G1 X7.42 Y5.50 F3000.00G1 X6.88 Y5.43 F3000.00G1 X6.34 Y5.49 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyligne composée de 29 segments.)G1 X7.58 Y5.52 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attendre 160ms)G1 X7.74 Y5.60 F3000.00G1 X7.8 3 Y5.48 F3000.00G1 X7.58 Y5.52 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attendre 150ms)(Polyline composée de 29 segments.)G1 X8.50 Y5.49 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attente 160ms)G1 X8.86 Y5.58 F3000.00G1 X9.21 Y5.51 F3000.00G1 X8.86 Y5.42 F3000.00G1 X8.50 Y5.49 F3000.00M300 S50.00 (stylo vers le haut)G4 P150 (attendre 150ms)(Polyligne composée de 29 segments.)G1 X6.75 Y6.41 F3000.00M300 S30.00 (stylo vers le bas)G4 P160 (attendre 160ms)G1 X6.93 Y6.46 F3000. 00G1 X6.91 Y6.29 F3000.00G1 X6.75 Y6.41 F3000.00G1 X6.75 Y6.41 F3000.00M300 S50.00 (stylo vers le haut)G4 P150 (attendre 150ms)(Polyline composée de 29 segments.)G1 X7.49 Y6.39 F3000.00M300 S30.00 (stylo baissé)G4 P160 (attente 160ms)G1 X7.53 Y6.53 F3000.00G1 X7.70 Y6.45 F3000.00G1 X7.49 Y6.39 F3000.00G1 X7.49 Y6.39 F3000.00M300 S50.00 (stylo relevé)G4 P150 (attente 150ms)(Polyline composée de 29 segments.)G1 X16.85 Y4.97 F3000.00M300 S30.00 (stylo abaissé)G4 P160 ( attendre 160ms)G1 X14.07 Y5.98 F3000.00G1 X13.33 Y6.40 F3000.00G1 X10.74 Y6.40 F3000.00G1 X8.14 Y6.49 F3000.00G1 X10.60 Y6.58 F3000 .00G1 X13.07 Y6.64 F3000.00G1 X12.75 Y6.98 F3000.00G1 X11.99 Y8.33 F3000.00G1 X12.30 Y9.13 F3000.00G1 X12.98 Y9.85 F3000.00G1 X14.73 Y10.48 F3000.00G1 X16.42 Y10.34 F3000.00G1 X16.89 Y10.16 F3000.00G1 X17.20 Y10.44 F3000.00G1 X17.44 Y10.92 F3000.00G1 X15.95 Y12.12 F3000. 00G1 X14.52 Y13.21 F3000.00G1 X14.17 Y14.50 F3000.00G1 X14.18 Y14.85 F3000.00G1 X13.90 Y14.95 F3000.00G1 X13.30 Y15.34 F3000.00G1 X13.02 Y16 .08 F3000.00G1 X13.23 Y16.62 F3000.00G1 X14.03 Y16.94 F3000.00G1 X14.80 Y16.89 F3000.00G1 X15.21 Y16.80 F3000.00G1 X15.35 Y17.02 F3000.00G1 X15.71 Y17.77 F3000.00G1 X16.05 Y18.61 F3000.00G1 X15.77 Y19.35 F3000.00G1 X15.47 Y20.24 F3000.00G1 X15.20 Y20.73 F3000.00G1 X13.98 Y20. 91 F3000.00G1 X12.47 Y21.26 F3000.00G1 X11.32 Y21.88 F3000.00G1 X10.23 Y23.00 F3000.00G1 X9.82 Y24.17 F3000.00G1 X9.94 Y24.90 F3000.00G1 X10 .41 Y25.47 F3000.00G1 X10.77 Y25.78 F3000.00G1 X10.53 Y26.37 F3000.00G1 X10.04 Y28.07 F3000.00G1 X10.02 Y29.68 F3000.00G1 X10.50 Y31.25 F3000.00G1 X11.46 Y32.80 F3000.00G1 X 13.34 Y34.54 F3000.00G1 X15.75 Y36.02 F3000.00G1 X16.94 Y36.57 F3000.00G1 X11.31 Y36.60 F3000.00G1 X5.53 Y36.58 F3000.00G1 X5.38 Y21.60 F3000.00G1 X5.41 Y8.55 F3000.00G1 X5.62 Y6.61 F3000.00G1 X5.85 Y6.48 F3000.00G1 X5.50 Y6.40 F3000.00G1 X5.14 Y6.40 F3000.00G1 X5.14 Y21.60 F3000.00G1 X5.14 Y36.80 F3000.00G1 X11.39 Y36.80 F3000.00G1 X17.65 Y36.80 F3000.00G1 X18.65 Y37.07 F3000.00G1 X21.13 Y37.54 F3000.00G1 X23.70 Y37.69 F3000.00G1 X26.12 Y37.52 F3000.00G1 X28.11 Y37.03 F3000.00G1 X28.70 Y36.80 F3000.00G1 X33.01 Y36.80 F3000.00G1 X37.32 Y36.80 F3000.00G1 X37.32 Y21.60 F3000.00G1 X37.32 Y6.40 F3000.00G1 X32.21 Y6.40 F3000.00G1 X26.73 Y6.25 F3000.00G1 X22.57 Y5.07 F3000.00G1 X16.85 Y4.97 F3000.00G1 X16.85 Y4.97 F3000.00M300 S50.00 (pen up)G4 P150 (wait 150ms)(Polyline consisting of 29 segments.)G1 X20.57 Y5.03 F3000.00M300 S30.00 (pen down)G4 P160 (wait 160ms)G1 X23.06 Y5.34 F3000.00G1 X24.86 Y5.94 F3000.00G1 X25.99 Y6.82 F3000.00G1 X26.48 Y8.01 F3000.00G1 X26.11 Y9.51 F3000.00G1 X24.89 Y 10.76 F3000.00G1 X23.73 Y11.07 F3000.00G1 X22.18 Y10.75 F3000.00G1 X20.76 Y10.29 F3000.00G1 X20.13 Y9.96 F3000.00G1 X19.83 Y9.40 F3000.00G1 X19.66 Y9.17 F3000.00G1 X19.74 Y9.72 F3000.00G1 X20.51 Y10.61 F3000.00G1 X21.41 Y11.91 F3000.00G1 X21.31 Y12.42 F3000.00G1 X20.85 Y12.91 F3000.00G1 X19.04 Y13.73 F3000.00G1 X18.83 Y13.81 F3000.00G1 X19.56 Y13.72 F3000.00G1 X20.90 Y13.07 F3000.00G1 X21.48 Y12.71 F3000.00G1 X21.88 Y12.90 F3000.00G1 X23.87 Y14.56 F3000.00G1 X24.34 Y15.23 F3000.00G1 X23.85 Y15.22 F3000.00G1 X19.04 Y15.20 F3000.00G1 X16.99 Y15.70 F3000.00G1 X15.62 Y16.42 F3000.00G1 X15.31 Y16.66 F3000.00G1 X14.86 Y15.95 F3000.00G1 X14.39 Y14.29 F3000.00G1 X14.89 Y12.97 F3000.00G1 X16.02 Y12.25 F3000.00G1 X17.19 Y11.48 F3000.00G1 X17.63 Y10.79 F3000.00G1 X16.90 Y10.01 F3000.00G1 X16.07 Y9.45 F3000.00G1 X16.23 Y9.73 F3000.00G1 X16.50 Y10.15 F3000.00G1 X14.70 Y10.34 F3000.00G1 X13.17 Y9.72 F3000.00G1 X12.44 Y9.03 F3000.00G1 X12.23 Y8.30 F3000.00G1 X12.53 Y7.53 F3000.00G1 X13.34 Y6.71 F3000 .00G1 X15.72 Y5.44 F3000.00G1 X18.83 Y4.95 F3000.00G1 X20.57 Y5.03 F3000.00G1 X20.57 Y5.03 F3000.00M300 S50.00 (pen up)G4 P150 (wait 150ms)(Polyline consisting of 29 segments.)G1 X27.30 Y6.65 F3000.00M300 S30.00 (pen down)G4 P160 (wait 160ms)G1 X29.25 Y7.52 F3000.00G1 X30.16 Y8.34 F3000.00G1 X30.46 Y9.06 F3000.00G1 X30.29 Y9.88 F3000.00G1 X29.49 Y10.84 F3000.00G1 X28.16 Y11.51 F3000.00G1 X26.25 Y11.62 F3000.00G1 X25.07 Y10.96 F3000.00G1 X25.51 Y10.50 F3000.00G1 X26.26 Y9.62 F3000.00G1 X26.58 Y8.19 F3000.00G1 X26.44 Y7.12 F3000.00G1 X25.77 Y6.34 F3000.00G1 X25.47 Y6.07 F3000.00G1 X25.68 Y6.08 F3000.00G1 X27.30 Y6.65 F3000.00G1 X27.30 Y6.65 F3000.00M300 S50.00 (pen up)G4 P150 (wait 150ms)(Polyline consisting of 29 segments.)G1 X37.06 Y21.42 F3000.00M300 S30.00 (pen down)G4 P160 (wait 160ms)G1 X37.02 Y36.41 F3000.00G1 X36.96 Y36.62 F3000.00G1 X33.06 Y36.62 F3000.00G1 X29.16 Y36.58 F3000.00G1 X29.47 Y36.10 F3000.00G1 X29.73 Y35.05 F3000.00G1 X29.34 Y34.00 F3000.00G1 X28.36 Y33.19 F3000.00G 1 X26.78 Y32.58 F3000.00G1 X24.56 Y32.18 F3000.00G1 X24.11 Y32.04 F3000.00G1 X24.44 Y31.73 F3000.00G1 X25.27 Y31.55 F3000.00G1 X28.11 Y31.00 F3000.00G1 X28.91 Y30.55 F3000.00G1 X29.29 Y29.72 F3000.00G1 X29.84 Y28.76 F3000.00G1 X30.44 Y28.08 F3000.00G1 X30.69 Y27.27 F3000.00G1 X30.58 Y26.46 F3000.00G1 X30.11 Y25.77 F3000.00G1 X29.82 Y25.45 F3000.00G1 X29.90 Y25.05 F3000.00G1 X29.83 Y24.22 F3000.00G1 X28.51 Y23.12 F3000.00G1 X26.38 Y22.66 F3000.00G1 X25.09 Y22.48 F3000.00G1 X24.68 Y22.25 F3000.00G1 X24.95 Y22.15 F3000.00G1 X26.03 Y21.82 F3000.00G1 X27.25 Y21.07 F3000.00G1 X27.59 Y20.36 F3000.00G1 X27.42 Y19.68 F3000.00G1 X26.21 Y18.82 F3000.00G1 X24.70 Y18.51 F3000.00G1 X24.39 Y18.50 F3000.00G1 X24.42 Y18.22 F3000.00G1 X24.59 Y16.70 F3000.00G1 X24.63 Y15.61 F3000.00G1 X24.39 Y15.01 F3000.00G1 X23.81 Y14.22 F3000.00G1 X23.52 Y13.85 F3000.00G1 X24.03 Y13.49 F3000.00G1 X24.69 Y12.99 F3000.00G1 X24.78 Y12.31 F3000.00G1 X24.54 Y11.48 F3000.00G1 X24.58 Y11.08 F3000.00G1 X25.21 Y11.31 F3000.00G 1 X26.08 Y11.74 F3000.00G1 X27.14 Y11.85 F3000.00G1 X28.29 Y11.66 F3000.00G1 X29.41 Y11.16 F3000.00G1 X30.24 Y10.39 F3000.00G1 X30.57 Y9.37 F3000.00...This file has been truncated, please download it to see its full contents.
Stepper CodeArduino
//AMIT#include #include #define LINE_BUFFER_LENGTH 512char STEP =MICROSTEP;// Servo position for Up and Down const int penZUp =115;const int penZDown =83;// Servo on PWM pin 10const int penServoPin =10;// Should be right for DVD steppers, but is not too important hereconst int stepsPerRevolution =48; // create servo object to control a servo Servo penServo; // Initialize steppers for X- and Y-axis using this Arduino pins for the L293D H-bridgeAF_Stepper myStepperY(stepsPerRevolution,1); AF_Stepper myStepperX(stepsPerRevolution,2); /* Structures, global variables */struct point { float x; float y; float z; };// Current position of plotheadstruct point actuatorPos;// Drawing settings, should be OKfloat StepInc =1;int StepDelay =0;int LineDelay =0;int penDelay =50;// Motor steps to go 1 millimeter.// Use test sketch to go 100 steps. Measure the length of line. // Calculate steps per mm. Enter here.float StepsPerMillimeterX =100.0;float StepsPerMillimeterY =100.0;// Drawing robot limits, in mm// OK to start with. Could go up to 50 mm if calibrated well. float Xmin =0;float Xmax =40;float Ymin =0;float Ymax =40;float Zmin =0;float Zmax =1;float Xpos =Xmin;float Ypos =Ymin;float Zpos =Zmax; // Set to true to get debug output.boolean verbose =false;// Needs to interpret // G1 for moving// G4 P300 (wait 150ms)// M300 S30 (pen down)// M300 S50 (pen up)// Discard anything with a (// Discard any other command!/********************** * void setup() - Initialisations ***********************/void setup() { // Setup Serial.begin( 9600 ); penServo.attach(penServoPin); penServo.write(penZUp); delay(100); // Decrease if necessary myStepperX.setSpeed(600); myStepperY.setSpeed(600); // Set &move to initial default position // TBD // Notifications!!! Serial.println("Mini CNC Plotter alive and kicking!"); Serial.print("X range is from "); Serial.print(Xmin); Serial.print(" to "); Serial.print(Xmax); Serial.println(" mm."); Serial.print("Y range is from "); Serial.print(Ymin); Serial.print(" to "); Serial.print(Ymax); Serial.println(" mm."); }/********************** * void loop() - Main loop ***********************/void loop() { delay(100); char line[ LINE_BUFFER_LENGTH ]; caractère c; int lineIndex; bool lineIsComment, lineSemiColon; lineIndex =0; lineSemiColon =false; lineIsComment =false; while (1) { // Serial reception - Mostly from Grbl, added semicolon support while ( Serial.available()>0 ) { c =Serial.read(); if (( c =='\n') || (c =='\r') ) { // End of line reached if ( lineIndex> 0 ) { // Line is complete. Then execute! line[ lineIndex ] ='\0'; // Terminate string if (verbose) { Serial.print( "Received :"); Serial.println( line ); } processIncomingLine( line, lineIndex ); lineIndex =0; } else { // Empty or comment line. Skip block. } lineIsComment =false; lineSemiColon =false; Serial.println("ok"); } else { if ( (lineIsComment) || (lineSemiColon) ) { // Throw away all comment characters if ( c ==')' ) lineIsComment =false; // End of comment. Resume line. } else { if ( c <=' ' ) { // Throw away whitepace and control characters } else if ( c =='/' ) { // Block delete not supported. Ignore character. } else if ( c =='(' ) { // Enable comments flag and ignore all characters until ')' or EOL. lineIsComment =true; } else if ( c ==';' ) { lineSemiColon =true; } else if ( lineIndex>=LINE_BUFFER_LENGTH-1 ) { Serial.println( "ERROR - lineBuffer overflow" ); lineIsComment =false; lineSemiColon =false; } else if ( c>='a' &&c <='z' ) { // Upcase lowercase line[ lineIndex++ ] =c-'a'+'A'; } else { line[ lineIndex++ ] =c; } } } } }}void processIncomingLine( char* line, int charNB ) { int currentIndex =0; char buffer[ 64 ]; // Hope that 64 is enough for 1 parameter struct point newPos; newPos.x =0.0; newPos.y =0.0; // Needs to interpret // G1 for moving // G4 P300 (wait 150ms) // G1 X60 Y30 // G1 X30 Y50 // M300 S30 (pen down) // M300 S50 (pen up) // Discard anything with a ( // Discard any other command! while( currentIndex =Xmax) { x1 =Xmax; } if (x1 <=Xmin) { x1 =Xmin; } if (y1>=Ymax) { y1 =Ymax; } if (y1 <=Ymin) { y1 =Ymin; } if (verbose) { Serial.print("Xpos, Ypos:"); Serial.print(Xpos); Serial.print(","); Serial.print(Ypos); Serial.println(""); } if (verbose) { Serial.print("x1, y1:"); Serial.print(x1); Serial.print(","); Serial.print(y1); Serial.println(""); } // Convert coordinates to steps x1 =(int)(x1*StepsPerMillimeterX); y1 =(int)(y1*StepsPerMillimeterY); float x0 =Xpos; float y0 =Ypos; // Let's find out the change for the coordinates long dx =abs(x1-x0); long dy =abs(y1-y0); int sx =x0 dy) { for (i=0; i=dx) { over-=dx; myStepperY.onestep(sy,STEP); } delay(StepDelay); } } else { for (i=0; i=dy) { over-=dy; myStepperX.onestep(sx,STEP); } delay(StepDelay); } } if (verbose) { Serial.print("dx, dy:"); Serial.print(dx); Serial.print(","); Serial.print(dy); Serial.println(""); } if (verbose) { Serial.print("Going to ("); Serial.print(x0); Serial.print(","); Serial.print(y0); Serial.println(")"); } // Delay before any next lines are submitted delay(LineDelay); // Update the positions Xpos =x1; Ypos =y1;}// Raises penvoid penUp() { penServo.write(penZUp); delay(penDelay); Zpos=Zmax; digitalWrite(15, LOW); digitalWrite(16, HIGH); if (verbose) { Serial.println("Pen up!"); } }// Lowers penvoid penDown() { penServo.write(penZDown); delay(penDelay); Zpos=Zmin; digitalWrite(15, HIGH); digitalWrite(16, LOW); if (verbose) { Serial.println("Pen down."); } }
LibrariesArduino
// Adafruit Motor shield library// copyright Adafruit Industries LLC, 2009// this code is public domain, enjoy!#if (ARDUINO>=100) #include "Arduino.h"#else #if defined(__AVR__) #include  #endif #include "WProgram.h"#endif#include "AFMotor.h"static uint8_t latch_state;#if (MICROSTEPS ==8)uint8_t microstepcurve[] ={0, 50, 98, 142, 180, 212, 236, 250, 255};#elif (MICROSTEPS ==16)uint8_t microstepcurve[] ={0, 25, 50, 74, 98, 120, 141, 162, 180, 197, 212, 225, 236, 244, 250, 253, 255};#endifAFMotorController::AFMotorController(void) { TimerInitalized =false;}void AFMotorController::enable(void) { // setup the latch /* LATCH_DDR |=_BV(LATCH); ENABLE_DDR |=_BV(ENABLE); CLK_DDR |=_BV(CLK); SER_DDR |=_BV(SER); */ pinMode(MOTORLATCH, OUTPUT); pinMode(MOTORENABLE, OUTPUT); pinMode(MOTORDATA, OUTPUT); pinMode(MOTORCLK, OUTPUT); latch_state =0; latch_tx(); // "reset" //ENABLE_PORT &=~_BV(ENABLE); // enable the chip outputs! digitalWrite(MOTORENABLE, LOW);}void AFMotorController::latch_tx(void) { uint8_t i; //LATCH_PORT &=~_BV(LATCH); digitalWrite(MOTORLATCH, LOW); //SER_PORT &=~_BV(SER); digitalWrite(MOTORDATA, LOW); for (i=0; i<8; i++) { //CLK_PORT &=~_BV(CLK); digitalWrite(MOTORCLK, LOW); if (latch_state &_BV(7-i)) { //SER_PORT |=_BV(SER); digitalWrite(MOTORDATA, HIGH); } else { //SER_PORT &=~_BV(SER); digitalWrite(MOTORDATA, LOW); } //CLK_PORT |=_BV(CLK); digitalWrite(MOTORCLK, HIGH); } //LATCH_PORT |=_BV(LATCH); digitalWrite(MOTORLATCH, HIGH);}static AFMotorController MC;/****************************************** MOTORS******************************************/inline void initPWM1(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) TCCR2A |=_BV(COM2A1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2a TCCR2B =freq &0x7; OCR2A =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) TCCR1A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc1a TCCR1B =(freq &0x7) | _BV(WGM12); OCR1A =0;#elif defined(__PIC32MX__) #if defined(PIC32_USE_PIN9_FOR_M1_PWM) // Make sure that pin 11 is an input, since we have tied together 9 and 11 pinMode(9, OUTPUT); pinMode(11, INPUT); if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC4 (pin 9) in PWM mode, with Timer2 as timebase OC4CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC4RS =0x0000; OC4R =0x0000; #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) // Make sure that pin 11 is an input, since we have tied together 9 and 11 pinMode(10, OUTPUT); pinMode(11, INPUT); if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC5 (pin 10) in PWM mode, with Timer2 as timebase OC5CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC5RS =0x0000; OC5R =0x0000; #else // If we are not using PWM for pin 11, then just do digital digitalWrite(11, LOW); #endif#else #error "This chip is not supported!"#endif #if !defined(PIC32_USE_PIN9_FOR_M1_PWM) &&!defined(PIC32_USE_PIN10_FOR_M1_PWM) pinMode(11, OUTPUT); #endif}inline void setPWM1(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) OCR2A =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) OCR1A =s;#elif defined(__PIC32MX__) #if defined(PIC32_USE_PIN9_FOR_M1_PWM) // Set the OC4 (pin 9) PMW duty cycle from 0 to 255 OC4RS =s; #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) // Set the OC5 (pin 10) PMW duty cycle from 0 to 255 OC5RS =s; #else // If we are not doing PWM output for M1, then just use on/off if (s> 127) { digitalWrite(11, HIGH); } else { digitalWrite(11, LOW); } #endif#else #error "This chip is not supported!"#endif}inline void initPWM2(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2B (pin 3) TCCR2A |=_BV(COM2B1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2b TCCR2B =freq &0x7; OCR2B =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 3 is now PE5 (OC3C) TCCR3A |=_BV(COM1C1) | _BV(WGM10); // fast PWM, turn on oc3c TCCR3B =(freq &0x7) | _BV(WGM12); OCR3C =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC1 (pin3) in PWM mode, with Timer2 as timebase OC1CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC1RS =0x0000; OC1R =0x0000;#else #error "This chip is not supported!"#endif pinMode(3, OUTPUT);}inline void setPWM2(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) OCR2B =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) OCR3C =s;#elif defined(__PIC32MX__) // Set the OC1 (pin3) PMW duty cycle from 0 to 255 OC1RS =s;#else #error "This chip is not supported!"#endif}inline void initPWM3(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A / PD6 (pin 6) TCCR0A |=_BV(COM0A1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on OC0A //TCCR0B =freq &0x7; OCR0A =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) TCCR4A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc4a TCCR4B =(freq &0x7) | _BV(WGM12); //TCCR4B =1 | _BV(WGM12); OCR4A =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC3 (pin 6) in PWM mode, with Timer2 as timebase OC3CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC3RS =0x0000; OC3R =0x0000;#else #error "This chip is not supported!"#endif pinMode(6, OUTPUT);}inline void setPWM3(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A on PB3 (Arduino pin #6) OCR0A =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) OCR4A =s;#elif defined(__PIC32MX__) // Set the OC3 (pin 6) PMW duty cycle from 0 to 255 OC3RS =s;#else #error "This chip is not supported!"#endif}inline void initPWM4(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0B / PD5 (pin 5) TCCR0A |=_BV(COM0B1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on oc0a //TCCR0B =freq &0x7; OCR0B =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 5 is now PE3 (OC3A) TCCR3A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc3a TCCR3B =(freq &0x7) | _BV(WGM12); //TCCR4B =1 | _BV(WGM12); OCR3A =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC2 (pin 5) in PWM mode, with Timer2 as timebase OC2CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC2RS =0x0000; OC2R =0x0000;#else #error "This chip is not supported!"#endif pinMode(5, OUTPUT);}inline void setPWM4(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A on PB3 (Arduino pin #6) OCR0B =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) OCR3A =s;#elif defined(__PIC32MX__) // Set the OC2 (pin 5) PMW duty cycle from 0 to 255 OC2RS =s;#else #error "This chip is not supported!"#endif}AF_DCMotor::AF_DCMotor(uint8_t num, uint8_t freq) { motornum =num; pwmfreq =freq; MC.enable(); switch (num) { case 1:latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B); // set both motor pins to 0 MC.latch_tx(); initPWM1(freq); Pause; case 2:latch_state &=~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // set both motor pins to 0 MC.latch_tx(); initPWM2(freq); Pause; case 3:latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B); // set both motor pins to 0 MC.latch_tx(); initPWM3(freq); Pause; case 4:latch_state &=~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // set both motor pins to 0 MC.latch_tx(); initPWM4(freq); Pause; }}void AF_DCMotor::run(uint8_t cmd) { uint8_t a, b; switch (motornum) { case 1:a =MOTOR1_A; b =MOTOR1_B; Pause; case 2:a =MOTOR2_A; b =MOTOR2_B; Pause; case 3:a =MOTOR3_A; b =MOTOR3_B; Pause; case 4:a =MOTOR4_A; b =MOTOR4_B; Pause; default:return; } switch (cmd) { case FORWARD:latch_state |=_BV(a); latch_state &=~_BV(b); MC.latch_tx(); Pause; case BACKWARD:latch_state &=~_BV(a); latch_state |=_BV(b); MC.latch_tx(); Pause; case RELEASE:latch_state &=~_BV(a); // A and B both low latch_state &=~_BV(b); MC.latch_tx(); Pause; }}void AF_DCMotor::setSpeed(uint8_t speed) { switch (motornum) { case 1:setPWM1(speed); Pause; case 2:setPWM2(speed); Pause; case 3:setPWM3(speed); Pause; case 4:setPWM4(speed); Pause; }}/****************************************** STEPPERS******************************************/AF_Stepper::AF_Stepper(uint16_t steps, uint8_t num) { MC.enable(); revsteps =steps; steppernum =num; currentstep =0; if (steppernum ==1) { latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B) &~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // all motor pins to 0 MC.latch_tx(); // enable both H bridges pinMode(11, OUTPUT); pinMode(3, OUTPUT); digitalWrite(11, HIGH); digitalWrite(3, HIGH); // use PWM for microstepping support initPWM1(STEPPER1_PWM_RATE); initPWM2(STEPPER1_PWM_RATE); setPWM1(255); setPWM2(255); } else if (steppernum ==2) { latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B) &~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // all motor pins to 0 MC.latch_tx(); // enable both H bridges pinMode(5, OUTPUT); pinMode(6, OUTPUT); digitalWrite(5, HIGH); digitalWrite(6, HIGH); // use PWM for microstepping support // use PWM for microstepping support initPWM3(STEPPER2_PWM_RATE); initPWM4(STEPPER2_PWM_RATE); setPWM3(255); setPWM4(255); }}void AF_Stepper::setSpeed(uint16_t rpm) { usperstep =60000000 / ((uint32_t)revsteps * (uint32_t)rpm); steppingcounter =0;}void AF_Stepper::release(void) { if (steppernum ==1) { latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B) &~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // all motor pins to 0 MC.latch_tx(); } else if (steppernum ==2) { latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B) &~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // all motor pins to 0 MC.latch_tx(); }}void AF_Stepper::step(uint16_t steps, uint8_t dir, uint8_t style) { uint32_t uspers =usperstep; uint8_t ret =0; if (style ==INTERLEAVE) { uspers /=2; } else if (style ==MICROSTEP) { uspers /=MICROSTEPS; steps *=MICROSTEPS;#ifdef MOTORDEBUG Serial.print("steps ="); Serial.println(steps, DEC);#endif } while (steps--) { ret =onestep(dir, style); delay(uspers/1000); // in ms steppingcounter +=(uspers % 1000); if (steppingcounter>=1000) { delay(1); steppingcounter -=1000; } } if (style ==MICROSTEP) { while ((ret !=0) &&(ret !=MICROSTEPS)) { ret =onestep(dir, style); delay(uspers/1000); // in ms steppingcounter +=(uspers % 1000); if (steppingcounter>=1000) { delay(1); steppingcounter -=1000; } } }}uint8_t AF_Stepper::onestep(uint8_t dir, uint8_t style) { uint8_t a, b, c, d; uint8_t ocrb, ocra; ocra =ocrb =255; if (steppernum ==1) { a =_BV(MOTOR1_A); b =_BV(MOTOR2_A); c =_BV(MOTOR1_B); d =_BV(MOTOR2_B); } else if (steppernum ==2) { a =_BV(MOTOR3_A); b =_BV(MOTOR4_A); c =_BV(MOTOR3_B); d =_BV(MOTOR4_B); } else { return 0; } // next determine what sort of stepping procedure we're up to if (style ==SINGLE) { if ((currentstep/(MICROSTEPS/2)) % 2) { // we're at an odd step, weird if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } else { // go to the next even step if (dir ==FORWARD) { currentstep +=MICROSTEPS; } else { currentstep -=MICROSTEPS; } } } else if (style ==DOUBLE) { if (! (currentstep/(MICROSTEPS/2) % 2)) { // we're at an even step, weird if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } else { // go to the next odd step if (dir ==FORWARD) { currentstep +=MICROSTEPS; } else { currentstep -=MICROSTEPS; } } } else if (style ==INTERLEAVE) { if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } if (style ==MICROSTEP) { if (dir ==FORWARD) { currentstep++; } else { // BACKWARDS currentstep--; } currentstep +=MICROSTEPS*4; currentstep %=MICROSTEPS*4; ocra =ocrb =0; if ( (currentstep>
=0) &&(currentstep 
=MICROSTEPS) &&(currentstep 
=MICROSTEPS*2) &&(currentstep 
=MICROSTEPS*3) &&(currentstep  #endif #include "WProgram.h"#endif#include "AFMotor.h"static uint8_t latch_state;#if (MICROSTEPS ==8)uint8_t microstepcurve[] ={0, 50, 98, 142, 180, 212, 236, 250, 255};#elif (MICROSTEPS ==16)uint8_t microstepcurve[] ={0, 25, 50, 74, 98, 120, 141, 162, 180, 197, 212, 225, 236, 244, 250, 253, 255};#endifAFMotorController::AFMotorController(void) { TimerInitalized =false;}void AFMotorController::enable(void) { // setup the latch /* LATCH_DDR |=_BV(LATCH); ENABLE_DDR |=_BV(ENABLE); CLK_DDR |=_BV(CLK); SER_DDR |=_BV(SER); */ pinMode(MOTORLATCH, OUTPUT); pinMode(MOTORENABLE, OUTPUT); pinMode(MOTORDATA, OUTPUT); pinMode(MOTORCLK, OUTPUT); latch_state =0; latch_tx(); // "reset" //ENABLE_PORT &=~_BV(ENABLE); // enable the chip outputs! digitalWrite(MOTORENABLE, LOW);}void AFMotorController::latch_tx(void) { uint8_t i; //LATCH_PORT &=~_BV(LATCH); digitalWrite(MOTORLATCH, LOW); //SER_PORT &=~_BV(SER); digitalWrite(MOTORDATA, LOW); for (i=0; i<8; i++) { //CLK_PORT &=~_BV(CLK); digitalWrite(MOTORCLK, LOW); if (latch_state &_BV(7-i)) { //SER_PORT |=_BV(SER); digitalWrite(MOTORDATA, HIGH); } else { //SER_PORT &=~_BV(SER); digitalWrite(MOTORDATA, LOW); } //CLK_PORT |=_BV(CLK); digitalWrite(MOTORCLK, HIGH); } //LATCH_PORT |=_BV(LATCH); digitalWrite(MOTORLATCH, HIGH);}static AFMotorController MC;/****************************************** MOTORS******************************************/inline void initPWM1(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) TCCR2A |=_BV(COM2A1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2a TCCR2B =freq &0x7; OCR2A =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) TCCR1A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc1a TCCR1B =(freq &0x7) | _BV(WGM12); OCR1A =0;#elif defined(__PIC32MX__) #if defined(PIC32_USE_PIN9_FOR_M1_PWM) // Make sure that pin 11 is an input, since we have tied together 9 and 11 pinMode(9, OUTPUT); pinMode(11, INPUT); if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC4 (pin 9) in PWM mode, with Timer2 as timebase OC4CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC4RS =0x0000; OC4R =0x0000; #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) // Make sure that pin 11 is an input, since we have tied together 9 and 11 pinMode(10, OUTPUT); pinMode(11, INPUT); if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC5 (pin 10) in PWM mode, with Timer2 as timebase OC5CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC5RS =0x0000; OC5R =0x0000; #else // If we are not using PWM for pin 11, then just do digital digitalWrite(11, LOW); #endif#else #error "This chip is not supported!"#endif #if !defined(PIC32_USE_PIN9_FOR_M1_PWM) &&!defined(PIC32_USE_PIN10_FOR_M1_PWM) pinMode(11, OUTPUT); #endif}inline void setPWM1(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) OCR2A =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) OCR1A =s;#elif defined(__PIC32MX__) #if defined(PIC32_USE_PIN9_FOR_M1_PWM) // Set the OC4 (pin 9) PMW duty cycle from 0 to 255 OC4RS =s; #elif defined(PIC32_USE_PIN10_FOR_M1_PWM) // Set the OC5 (pin 10) PMW duty cycle from 0 to 255 OC5RS =s; #else // If we are not doing PWM output for M1, then just use on/off if (s> 127) { digitalWrite(11, HIGH); } else { digitalWrite(11, LOW); } #endif#else #error "This chip is not supported!"#endif}inline void initPWM2(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2B (pin 3) TCCR2A |=_BV(COM2B1) | _BV(WGM20) | _BV(WGM21); // fast PWM, turn on oc2b TCCR2B =freq &0x7; OCR2B =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 3 is now PE5 (OC3C) TCCR3A |=_BV(COM1C1) | _BV(WGM10); // fast PWM, turn on oc3c TCCR3B =(freq &0x7) | _BV(WGM12); OCR3C =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC1 (pin3) in PWM mode, with Timer2 as timebase OC1CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC1RS =0x0000; OC1R =0x0000;#else #error "This chip is not supported!"#endif pinMode(3, OUTPUT);}inline void setPWM2(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer2A on PB3 (Arduino pin #11) OCR2B =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 11 is now PB5 (OC1A) OCR3C =s;#elif defined(__PIC32MX__) // Set the OC1 (pin3) PMW duty cycle from 0 to 255 OC1RS =s;#else #error "This chip is not supported!"#endif}inline void initPWM3(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A / PD6 (pin 6) TCCR0A |=_BV(COM0A1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on OC0A //TCCR0B =freq &0x7; OCR0A =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) TCCR4A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc4a TCCR4B =(freq &0x7) | _BV(WGM12); //TCCR4B =1 | _BV(WGM12); OCR4A =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC3 (pin 6) in PWM mode, with Timer2 as timebase OC3CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC3RS =0x0000; OC3R =0x0000;#else #error "This chip is not supported!"#endif pinMode(6, OUTPUT);}inline void setPWM3(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A on PB3 (Arduino pin #6) OCR0A =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) OCR4A =s;#elif defined(__PIC32MX__) // Set the OC3 (pin 6) PMW duty cycle from 0 to 255 OC3RS =s;#else #error "This chip is not supported!"#endif}inline void initPWM4(uint8_t freq) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0B / PD5 (pin 5) TCCR0A |=_BV(COM0B1) | _BV(WGM00) | _BV(WGM01); // fast PWM, turn on oc0a //TCCR0B =freq &0x7; OCR0B =0;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 5 is now PE3 (OC3A) TCCR3A |=_BV(COM1A1) | _BV(WGM10); // fast PWM, turn on oc3a TCCR3B =(freq &0x7) | _BV(WGM12); //TCCR4B =1 | _BV(WGM12); OCR3A =0;#elif defined(__PIC32MX__) if (!MC.TimerInitalized) { // Set up Timer2 for 80MHz counting fro 0 to 256 T2CON =0x8000 | ((freq &0x07) <<4); // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=, T32=0, TCS=0; // ON=1, FRZ=0, SIDL=0, TGATE=0, TCKPS=0, T32=0, TCS=0 TMR2 =0x0000; PR2 =0x0100; MC.TimerInitalized =true; } // Setup OC2 (pin 5) in PWM mode, with Timer2 as timebase OC2CON =0x8006; // OC32 =0, OCTSEL=0, OCM=6 OC2RS =0x0000; OC2R =0x0000;#else #error "This chip is not supported!"#endif pinMode(5, OUTPUT);}inline void setPWM4(uint8_t s) {#if defined(__AVR_ATmega8__) || \ defined(__AVR_ATmega48__) || \ defined(__AVR_ATmega88__) || \ defined(__AVR_ATmega168__) || \ defined(__AVR_ATmega328P__) // use PWM from timer0A on PB3 (Arduino pin #6) OCR0B =s;#elif defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) // on arduino mega, pin 6 is now PH3 (OC4A) OCR3A =s;#elif defined(__PIC32MX__) // Set the OC2 (pin 5) PMW duty cycle from 0 to 255 OC2RS =s;#else #error "This chip is not supported!"#endif}AF_DCMotor::AF_DCMotor(uint8_t num, uint8_t freq) { motornum =num; pwmfreq =freq; MC.enable(); switch (num) { case 1:latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B); // set both motor pins to 0 MC.latch_tx(); initPWM1(freq); Pause; case 2:latch_state &=~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // set both motor pins to 0 MC.latch_tx(); initPWM2(freq); Pause; case 3:latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B); // set both motor pins to 0 MC.latch_tx(); initPWM3(freq); Pause; case 4:latch_state &=~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // set both motor pins to 0 MC.latch_tx(); initPWM4(freq); Pause; }}void AF_DCMotor::run(uint8_t cmd) { uint8_t a, b; switch (motornum) { case 1:a =MOTOR1_A; b =MOTOR1_B; Pause; case 2:a =MOTOR2_A; b =MOTOR2_B; Pause; case 3:a =MOTOR3_A; b =MOTOR3_B; Pause; case 4:a =MOTOR4_A; b =MOTOR4_B; Pause; default:return; } switch (cmd) { case FORWARD:latch_state |=_BV(a); latch_state &=~_BV(b); MC.latch_tx(); Pause; case BACKWARD:latch_state &=~_BV(a); latch_state |=_BV(b); MC.latch_tx(); Pause; case RELEASE:latch_state &=~_BV(a); // A and B both low latch_state &=~_BV(b); MC.latch_tx(); Pause; }}void AF_DCMotor::setSpeed(uint8_t speed) { switch (motornum) { case 1:setPWM1(speed); Pause; case 2:setPWM2(speed); Pause; case 3:setPWM3(speed); Pause; case 4:setPWM4(speed); Pause; }}/****************************************** STEPPERS******************************************/AF_Stepper::AF_Stepper(uint16_t steps, uint8_t num) { MC.enable(); revsteps =steps; steppernum =num; currentstep =0; if (steppernum ==1) { latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B) &~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // all motor pins to 0 MC.latch_tx(); // enable both H bridges pinMode(11, OUTPUT); pinMode(3, OUTPUT); digitalWrite(11, HIGH); digitalWrite(3, HIGH); // use PWM for microstepping support initPWM1(STEPPER1_PWM_RATE); initPWM2(STEPPER1_PWM_RATE); setPWM1(255); setPWM2(255); } else if (steppernum ==2) { latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B) &~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // all motor pins to 0 MC.latch_tx(); // enable both H bridges pinMode(5, OUTPUT); pinMode(6, OUTPUT); digitalWrite(5, HIGH); digitalWrite(6, HIGH); // use PWM for microstepping support // use PWM for microstepping support initPWM3(STEPPER2_PWM_RATE); initPWM4(STEPPER2_PWM_RATE); setPWM3(255); setPWM4(255); }}void AF_Stepper::setSpeed(uint16_t rpm) { usperstep =60000000 / ((uint32_t)revsteps * (uint32_t)rpm); steppingcounter =0;}void AF_Stepper::release(void) { if (steppernum ==1) { latch_state &=~_BV(MOTOR1_A) &~_BV(MOTOR1_B) &~_BV(MOTOR2_A) &~_BV(MOTOR2_B); // all motor pins to 0 MC.latch_tx(); } else if (steppernum ==2) { latch_state &=~_BV(MOTOR3_A) &~_BV(MOTOR3_B) &~_BV(MOTOR4_A) &~_BV(MOTOR4_B); // all motor pins to 0 MC.latch_tx(); }}void AF_Stepper::step(uint16_t steps, uint8_t dir, uint8_t style) { uint32_t uspers =usperstep; uint8_t ret =0; if (style ==INTERLEAVE) { uspers /=2; } else if (style ==MICROSTEP) { uspers /=MICROSTEPS; steps *=MICROSTEPS;#ifdef MOTORDEBUG Serial.print("steps ="); Serial.println(steps, DEC);#endif } while (steps--) { ret =onestep(dir, style); delay(uspers/1000); // in ms steppingcounter +=(uspers % 1000); if (steppingcounter>=1000) { delay(1); steppingcounter -=1000; } } if (style ==MICROSTEP) { while ((ret !=0) &&(ret !=MICROSTEPS)) { ret =onestep(dir, style); delay(uspers/1000); // in ms steppingcounter +=(uspers % 1000); if (steppingcounter>=1000) { delay(1); steppingcounter -=1000; } } }}uint8_t AF_Stepper::onestep(uint8_t dir, uint8_t style) { uint8_t a, b, c, d; uint8_t ocrb, ocra; ocra =ocrb =255; if (steppernum ==1) { a =_BV(MOTOR1_A); b =_BV(MOTOR2_A); c =_BV(MOTOR1_B); d =_BV(MOTOR2_B); } else if (steppernum ==2) { a =_BV(MOTOR3_A); b =_BV(MOTOR4_A); c =_BV(MOTOR3_B); d =_BV(MOTOR4_B); } else { return 0; } // next determine what sort of stepping procedure we're up to if (style ==SINGLE) { if ((currentstep/(MICROSTEPS/2)) % 2) { // we're at an odd step, weird if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } else { // go to the next even step if (dir ==FORWARD) { currentstep +=MICROSTEPS; } else { currentstep -=MICROSTEPS; } } } else if (style ==DOUBLE) { if (! (currentstep/(MICROSTEPS/2) % 2)) { // we're at an even step, weird if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } else { // go to the next odd step if (dir ==FORWARD) { currentstep +=MICROSTEPS; } else { currentstep -=MICROSTEPS; } } } else if (style ==INTERLEAVE) { if (dir ==FORWARD) { currentstep +=MICROSTEPS/2; } else { currentstep -=MICROSTEPS/2; } } if (style ==MICROSTEP) { if (dir ==FORWARD) { currentstep++; } else { // BACKWARDS currentstep--; } currentstep +=MICROSTEPS*4; currentstep %=MICROSTEPS*4; ocra =ocrb =0; if ( (currentstep>
=0) &&(currentstep 
=MICROSTEPS) &&(currentstep 
=MICROSTEPS*2) &&(currentstep 
=MICROSTEPS*3) &&(currentstep  

Pièces et boîtiers personnalisés

cnc_contour_SNa09InGkY.gm1 cnc_coppertop_PIxEVyoMWI.gtl

Schémas


Processus de fabrication

  1. Visualiseur de musique Arduino DIY LUMAZOID
  2. Voltmètre DIY utilisant Arduino et Smartphone
  3. Planche à roulettes en réalité virtuelle DIY
  4. Triple CNC - Version UPGRADE
  5. Table d'extrémité CNC Zen Garden
  6. Traitement DIY Arduino RADIONICS MMachine
  7. Machine CNC
  8. Initiation à l'Usinage Vertical ou CNC VMC
  9. Qu'est-ce qu'une machine Mini VMC ?